Transfer of micro and nano-photonic silicon nanomembrane waveguide devices on flexible substrates.
نویسندگان
چکیده
This paper demonstrates transfer of optical devices without extra un-patterned silicon onto low-cost, flexible plastic substrates using single-crystal silicon nanomembranes. Employing this transfer technique, stacking two layers of silicon nanomembranes with photonic crystal waveguide in the first layer and multi mode interference couplers in the second layer is shown, respectively. This technique is promising to realize high density integration of multilayer hybrid structures on flexible substrates.
منابع مشابه
Flexible single-crystal silicon nanomembrane photonic crystal cavity.
Flexible inorganic electronic devices promise numerous applications, especially in fields that could not be covered satisfactorily by conventional rigid devices. Benefits on a similar scale are also foreseeable for silicon photonic components. However, the difficulty in transferring intricate silicon photonic devices has deterred widespread development. In this paper, we demonstrate a flexible ...
متن کاملStamp printing of silicon-nanomembrane-based photonic devices onto flexible substrates with a suspended configuration.
In this Letter, we demonstrate for the first time (to our best knowledge) stamp printing of silicon nanomembrane (SiNM)-based in-plane photonic devices onto a flexible substrate using a modified transfer printing method that utilizes a suspended configuration, which can adjust the adhesion between the released SiNM and the "handle" silicon wafer. With this method, 230 nm thick, 30 μm wide, and ...
متن کاملSemiconductor Nanomembrane-Based Light-Emitting and Photodetecting Devices
Heterogeneous integration between silicon (Si), III-V group material and Germanium (Ge) is highly desirable to achieve monolithic photonic circuits. Transfer-printing and stacking between different semiconductor nanomembranes (NMs) enables more versatile combinations to realize high-performance light-emitting and photodetecting devices. In this paper, lasers, including vertical and edge-emittin...
متن کاملSelf-aligned, extremely high frequency III-V metal-oxide-semiconductor field-effect transistors on rigid and flexible substrates.
This paper reports the radio frequency (RF) performance of InAs nanomembrane transistors on both mechanically rigid and flexible substrates. We have employed a self-aligned device architecture by using a T-shaped gate structure to fabricate high performance InAs metal-oxide-semiconductor field-effect transistors (MOSFETs) with channel lengths down to 75 nm. RF measurements reveal that the InAs ...
متن کاملNovel nanotube-on-insulator (NOI) approach toward single-walled carbon nanotube devices.
We present a novel nanotube-on-insulator (NOI) approach for producing high-yield nanotube devices based on aligned single-walled carbon nanotubes. First, we managed to grow aligned nanotube arrays with controlled density on crystalline, insulating sapphire substrates, which bear analogy to industry-adopted silicon-on-insulator substrates. On the basis of the nanotube arrays, we demonstrated reg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Optics express
دوره 18 19 شماره
صفحات -
تاریخ انتشار 2010